Bounding Sectional Curvature along a Kähler-ricci Flow
نویسندگان
چکیده
If a normalized Kähler-Ricci flow g(t), t ∈ [0,∞), on a compact Kähler manifold M , dimC M = n ≥ 3, with positive first Chern class satisfies g(t) ∈ 2πc1(M) and has curvature operator uniformly bounded in Ln-norm, the curvature operator will also be uniformly bounded along the flow. Consequently the flow will converge along a subsequence to a Kähler-Ricci soliton.
منابع مشابه
(kähler-)ricci Flow on (kähler) Manifolds
One of the most interesting questions in Riemannian geometry is that of deciding whether a manifold admits curvatures of certain kinds. More specifically, one might want to know whether some given manifold admits a canonical metric, i.e. one with constant curvature of some form (sectional curvature, scalar curvature, etc.). (This will in fact have many topological implications.). One such probl...
متن کاملOn the Kähler-ricci Flow on Complex Surfaces
One of the most important properties of a geometric flow is whether it preserves the positivity of various notions of curvature. In the case of the Kähler-Ricci flow, the positivity of the curvature operator (Hamilton [7]), the positivity of the biholomorphic sectional curvature (Bando [1], Mok[8]), and the positivity of the scalar curvature (Hamilton [4]) are all preserved. However, whether th...
متن کاملKähler-ricci Flow on Stable Fano Manifolds
We study the Kähler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kähler-Einstein metric.
متن کاملThe Kähler Ricci Flow on Fano Surfaces (I)
Suppose {(M, g(t)), 0 ≤ t <∞} is a Kähler Ricci flow solution on a Fano surface. If |Rm| is not uniformly bounded along this flow, we can blowup at the maximal curvature points to obtain a limit complete Riemannian manifold X. We show that X must have certain topological and geometric properties. Using these properties, we are able to prove that |Rm| is uniformly bounded along every Kähler Ricc...
متن کاملOn the Simply Connectedness of Non-negatively Curved Kähler Manifolds and Applications
We study complete noncompact long time solutions (M, g(t)) to the Kähler-Ricci flow with uniformly bounded nonnegative holomorphic bisectional curvature. We will show that when the Ricci curvature is positive and uniformly pinched, i.e. Rī ≥ cRgī at (p, t) for all t for some c > 0, then there always exists a local gradient Kähler-Ricci soliton limit around p after possibly rescaling g(t) alon...
متن کامل